Stem cell tracking using iron oxide nanoparticles

نویسندگان

  • Elizabeth Bull
  • Seyed Yazdan Madani
  • Roosey Sheth
  • Amelia Seifalian
  • Mark Green
  • Alexander M Seifalian
چکیده

Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells  

Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...

متن کامل

Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were en...

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI.

Iron oxide nanoparticles (IONPs, sometimes called superparamagnetic iron oxide nanoparticles or SPIONs) have already shown promising results for in vivo cell tracking using magnetic resonance imaging (MRI). To fully exploit the potential of these materials as contrast agents, there is still a need for a greater understanding of how they react to physiological conditions. A key aspect is the spe...

متن کامل

Cell, Tumor, and Stem Cell Biology Magnetic Resonance Imaging of Mesenchymal Stem Cells Homing to Pulmonary Metastases Using Biocompatible Magnetic Nanoparticles

The ability of mesenchymal stem cells (MSC) to specifically home to tumors has suggested their potential use as a delivery vehicle for cancer therapeutics. MSC integration into tumors has been shown in animal models using histopathologic techniques after animal sacrifice. Tracking the delivery and engraftment of MSCs into human tumors will need in vivo imaging techniques. We hypothesized that l...

متن کامل

Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking

Stem cells hold great promise for the treatment of multiple human diseases and disorders. Tracking and monitoring of stem cells in vivo after transplantation can supply important information for determining the efficacy of stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be the most effective and safest non-invasive technique for stem cell trackin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014